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Trigonal 3 [ 111 ] 
(rhombohedral 32 [111], [110], 

axes) [011], [101] 
3m None 

Hexagonal 6 

622 

6 rnm 

Cubic 

[ool] 
None 
[001],[100], 
[010],[110], 
[210],[120], 
[i10] 
None 

6m2 None 

62rn None 

23 (111), (100) 
~,3m None 

432 (111), (100), 
(11o) 

None 
None 

[ uuw ], [ uvv ], 
[uvu],[li0], 
[011],[101] 
None 
[001], [uv0] • 
None 

[2uuw],[u2uw], 
[uaw], [uOw], 
[0vw], [ uuw ] 
[2uuw], [u2uw], 
[uaw] 
[uOw],[Ovw] 
[ aaw ] 
None 
[ uuw ], [ auw ], 
[uvu],[avu], 
[uvvl,[u~v] 
None 

Note that in classes 4 m m ,  3m, 6, 6 m m ,  6 2 m  and 2,3m 
all second-rank axial tensors [at least the symmetric  
parts; see Agranovitch & Ginzburg,  (1965)] are zero, 
whereas higher-order  (4 and 6) symmetric axial tensor 
components  do occur (Molchanov,  1966). This 
extension to higher-order  tensor components  is just 

like the extension from 1st- to 3rd-rank polar  tensors 
implied in Table 10.5.2 of  In ternat ional  Tables  f o r  
Crys ta l lography  (1987). 
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Abstract 

Expressions for Bragg's law have been derived for 
the general case of  Bragg diffraction in which an 
incident beam strikes a crystal surface at an angle a, 
is then diffracted by planes inclined to the surface by 
~p and leaves the same surface at an angle /3. The 
crystal is assumed to have a refractive index n = 1 - 8 
and Z is the X-ray wavelength in air or vacuum. Under  
these condit ions Bragg's law can be written as 

h = 2 d ( 1 - 8 ) [ c o s  ~o sin ( a - 8 / t a n  a )  

+s in  ~p cos ( a  - 8 / t an  a )  cos cr] 

and 

A = 2d(1 - 8)[cos ~p sin (/3 - 8 / t an /3 )  

+s in  ~¢ cos (/3 - 8 / t an /3 )  cos r].  

o" and r are dihedral  angles defined in terms of  N, 
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the normal to the crystal surface; d*, the normal to 
the diffracting planes; -So, a ray in air antiparallel  
to the incident beam and s, the diffracted ray in the 
air. o" is the angle between (-So,  N)  and (d*,  N)  and 
r the angle between (s, N)  and (d*,  N) .  When the 
plane of diffraction contains N, o- and r are either 0 
or 180 ° and Bragg's law takes the form 

h = 2 d ( 1 - 8 )  sin ( a - 8 / t a n  a + q ~ ) + ~  for o r = 0  ° 

- ~o for o" = 180 ° 

A = 2d(1 - 8) sin (/3 - 8 / t an /3  + ~) + q~ for r = 0 ° 

- ¢  f o r r = 1 8 0  ° . 

The magni tude of  the refraction effect varies primari ly 
with X-ray wavelength,  electron density, and beam- 
to-crystal angle. Because of refraction the beam-to- 
crystal-surface angle required to satisfy Bragg's law 
can change by 10 -4 to 10 -~ degrees. 

© 1989 International Union of Crystallography 
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Introduction 

To measure accurately the spacing between planes of 
atoms in a single crystal by X-ray diffraction one must 
account for the refraction that an X-ray beam 
experiences when it passes from a medium of one 
electron density to another (Bond, 1960). A recent 
study has shown that for the case of X-ray powder 
diffraction, little or no correction for refraction is 
generally needed (Hart, Parrish, Belloto & Lim, 1988). 
Refraction generally causes a beam to change both 
its direction and wavelength and therefore the quan- 
tities h'  and 0' in Bragg's law, h ' =  2d sin 0', should 
be interpreted as the wavelength and diffraction angle 
inside the crystal rather than in the air or vacuum 
that surrounds it. A well known form of Bragg's law 
(Compton & Allison, 1947; Guinier, 1963) that makes 
use of the more accessible quantities 0 and h is 

h = 2 d  sin 0 ( 1 - 6 / s i n  2 0) (1) 

where 20 is the angle between the incident and 
diffracted beams in the air and A is the tabulated 
wavelength associated with transmission in a vacuum. 
Differences between transmission in air and vacuum 
are small enough to be neglected here. Equation (1), 
however, applies only to the special case of Bragg 
diffraction from planes which are parallel to the 
surface of a crystal. It assumes a refractive index of 
n = 1 outside the crystal and n = 1 - 8  inside the 
crystal. 

The derivation of this equation makes use of the 
facts that upon entering the crystal the X-ray 
wavelength changes from h/1 to h / n  and that the 
beam changes propagation direction as described by 
Snell's law. 

Snell's law is illustrated in Fig. 1 and can be written 

sin ~p/sin ~p'= n'/n = cos a / c os  a ' .  (2) 

If one substitutes into (2) n - -1 ,  n ' - - 1 -  6 and a ' =  
a - d a  and then expands cos ( a - d a ) ,  one obtains 
d a - - 6 / t a n  a. To obtain (1) one substitutes into the 
expression h ' =  2d sin 0' the quantities h ' =  h / n  and 

R I 

c P ~ ~  I n>n ' 

n a / ~  I 

////~/////////~x///da , / / / / / / / / / /  
n ! , k x , ~  

I ' / \  

Fig. 1. Construction illustrating Snell's law. Ray RR undergoes 
refraction when passing through the surface separating regions 
of refractive index n and n'. 

0 ' = 0 - d 0 ,  sets n = l - 6 ,  expands s i n ( 0 - d 0 ) ,  sets 
dO = 6 / tan  0 and drops second-order terms in 6. 

In (1) 6 is given by 

6 = h 2(e2/mc2)(1/ZTr) F(0) N (3) 

where F(0) is the structure factor evaluated at 0 = 0 ° 
and N is the number of unit cells per unit volume of 
material. When anomalous dispersion can be 
neglected F(O)N=pe where Pe is the number of 
electrons per unit volume in the material. 

Fig. 2 illustrates the effects described above. Ray 
AO makes an angle O(nc = 1) with both the crystal 
surface and diffracting planes, PP. O(nc) is the angle 
that a ray in air makes with the crystal surface such 
that it will be diffracted by planes PP in a crystal of 
refractive index n~. Because nc is actually less than 
one, the wavelength of the incident beam inside the 
crystal is slightly larger than A and the angle required 
to satisfy Bragg's law is increased by 6 tan 0. Ray 
BDO satisfies this condition. Because of Snell's law 
the ray that travels in the direction DO inside the 
crystal must strike the crystal surface at a steeper 
angle. This steeper ray, CD, strikes the crystal at 
0 ( n ¢ < l )  and changes direction by 6/tanO upon 
entering the crystal. Thus when n~ changes from 1 to 
1 -  8 the incident beam changes direction by A0 to 
satisfy Bragg's law, where* 

A0 = 6(tan 0+  1/tan 0) = 26/sin 20. (4) 

To define A0 very accurately one must know the shape 
of the rocking curve or diffraction peak in detail. For 
the ideal case of a plane wave scattered by a perfect 
non-absorbing crystal this shape is well known and 

* As written za0 is given in radians. 

a(nc < I") ~n2~0 

/ #Y~ \ t a n ~  n=l 

CRYSTAL 8" / ~.~, _, 
n c ~-"P 

P 

Fig. 2. For a crystal of  refractive index n c = 1, ray A O  satisfies 
Bragg's law for diffraction from planes PP which are parallel 
to the crystal surface. When nc < 1 a ray of the same vacuum 
wavelength follows path CDO in order to satisfy Bragg's law. 
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the centroid of the rocking curve can be used to define 
,40 (James, 1965). For real crystals the shape of the 
rocking curve is affected by absorption and the occur- 
rence of simultaneous reflections as well as beam 
polarization, collimation, monochromaticity and dis- 
persion (Ewald, 1986). 

The general case of Bragg diffraction 

The general case of Bragg diffraction can be repre- 
sented by Fig. 3. In this stereogram N represents the 
outward facing normal to the crystal surface and d* 
the normal to a set of diffracting planes. The angle 
between d* and N is ~o. In the region outside the 
crystal it is assumed that n = 1 and that ray -So, which 
is anti-parallel to the incident beam, makes an angle 
of ( 9 0 - a ) °  with N. When So enters the crystal it is 
refracted away from N, changing direction by da  = 
6/ tan  a, and becomes s6. The dihedral angle between 
plane (N, d*) and plane ( N , - S o , - s 6 )  is o-. Within 
the crystal diffracted ray s' makes an angle of (90 - 0') ° 
with d*. When s' leaves the crystal it is refracted 
towards N, changing direction by d/3--~/ tan/3 .  It 
becomes ray s which makes an angle of (90 - /3 )°  with 
N. The dihedral angle between planes (N, d*) and 
(N,s,s ')  is r. 

To obtain the desired form of Bragg's law one first 
expresses sin 0' in terms of experimentally measur- 
able quantities by using the trigonometric relationship 
cos a = cos b cos c + sin b sin c cos A. This relates the 
three sides of spherical triangle a, b, c to angle A 
opposite side a (Donnay, 1945). In our case consider 
the two triangles -s~,  d*, N and s', d*, N. For the 

Fig. 3. Stereogram used to describe the general case of Bragg 
diffraction. N represents the normal to the crystal surface; d*, 
the normal to the diffracting planes; -So, the direction anti- 
parallel to the incident beam in the air; - s6 ,  the direction 
antiparallel to the incident beam inside the crystal; s', the 
diffracted ray in the crystal; and s, the diffracted ray in the air. 

first we have 

cos ( 9 0 -  0') =cos  ~o cos ( 9 0 -  a + d a )  

+ sin ~o sin (90 - a + da  ) cos o', 

which can be substituted into Bragg's law, h = 
2d(1 - 6 )  sin 0', to obtain 

h = 2d(1 - tS)[cos ~o sin (a - d a )  

+sin  ~o cos (a - d a )  cos o']. (5a) 

For the second triangle we have 

cos (90 - 0') = cos ~ cos (90 - /3  + d/3) 

+ sin ¢ sin (90- /3  + d/3) cos r, 

which yields 

h =2d(1  - 6)[cos ¢ sin (/3 -d /3 )  

+sin  ~ cos (/3 -d /3 )  cos r]. (5b) 

Equations (5a) and (5b) are the desired expressions. 
Depending upon the knowns these equations can be 
used individually or simultaneously. 

When measuring rocking curves or d spacings by 
the Bond method the plane of diffraction contains 
the normal to the crystal surface. In this special case 
N, d * , - S o , - s ~ ,  s and s' all lie in one plane, cr and 
r are either 0 or 180 °, and (5a) and (5b) simplify to 
(6a) and (6b) respectively. If the angles between the 
incident beam, surface normal and d* have been 
established then a and ¢ are known and (6a) can be 
used. 

h = 2 d ( 1 - 6 )  s i n ( a - d a  ± ~0) 

o r  

h = 2 d ( 1 - 6 ) s i n ( f l - d f l ± ~ o )  

+ q~ for cr = 0 ° 

-~o for ~r = 180 ° (6a) 

+ q~ for r = 0 ° 
-q~ for r = 180 °. (6b) 

Fig. 3 can be used to determine the sign of ~o in the 
above equations. Assume that N lies on great circle 
QR that runs through - s6 ,  d* and s'. If N lies 

! S' between Q and -So or between and R then tr-- r = 
0; if N lies between - s6  and d* then t r=  180 ° and 
r = 0 ° ;  and if N lies between d* and s' then t r = 0  ° 
and r = 180 °. 

The expression for A0 is given by (7) if -So, d*, 
N and s all lie in one plane and if d* is not parallel 
to N. This corresponds to equation (2-113) of James 
(1965). This case is illustrated by planes P'P' in 
Fig. 2. 

[ 1 ] ° -  q~ f°r  ° = ° °  
AO=~ tan Oq tan (O+q~) O+q~  for o.= 180o" 

(7) 
The effect of neglecting ~ in calculating A0 can be 
quite significant. For the 224 reflection from a 001-cut 
GaAs wafer studied with Cu Ka radiation A0 = 29-5" 
using (7) but only 6.2" if ~0 is neglected. Values of 
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zl0 can easily vary by three orders of magnitude from 
10 -4 degrees to 10 -1 degrees as electron density, 
wavelength and angles vary. For example, 6 differs 
by a factor of 70 when comparing silicon irradiated 
with Mo Ka radiation (6 = 0.158 x 10 -5) to tungsten 
irradiated with C r K a ( 6 = l l . 0 × 1 0 - s ) .  When ~ =  
0, 1/sin 20 varies from 5.75 to 1 as 20 changes from 
10 to 90 ° and when ~ is slightly less than 0 (i.e. grazing 
incidence) the trigonometric term in the expression 
for A0 can be large. For example when 0 - , p =  
1.0 °, 1/tan (0 - ~o) = 57.3. 
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Abstract 

A new approach to Kato's [Acta Cryst. (1980), A36, 
763-769, 770-778] calculations in the Laue case is 
presented, giving a clearer and simpler derivation of 
the mixed terms of the integrated intensities (Bragg- 
and forward-diffracted beams). The results are in 
agreement with calculations by A1 Haddad & Becker 
[Acta Cryst. (1988), A44, 262-270] showing the 
necessity of correcting two errors in the original treat- 
ment of Kato. 

I. Introduction 

The statistical theory of Kato (1980a, b) is an out- 
standing contribution to diffraction theory because it 
spans in principle the whole range of crystal perfec- 
tion, from perfect to ideally imperfect (extinction- 
free) crystals. The 'lattice phase factor' exp [ ig .  u(x, 
y, z)] which characterizes the crystal distortion in the 
wave-optical Taupin-Takagi  equations (Kato, 1976) 
[g is the diffraction vector and u(x, y, z) is the dis- 
placement field] is considered as a random function 
characterized by a static Debye-Waller  factor E and 
a correlation length ~'. In the present state of the 
theory the condition ~-~A, A being the extinction 
length, is assumed. 

E = 0 is the case of secondary extinction, for which 
diffraction from the incident direction (O beam) to 
the Bragg direction and conversely is entirely 
described by intensity-coupling equations (incoher- 
ent multiple scattering). E = 1 is the case of perfect 
crystals, for which the O and G beams are coherent. 
For other values of E(0 < E < 1), the coherent waves 
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are attenuated, even if the crystal is not absorbing, 
because anywhere in the crystal a diffraction event 
may transfer them into incoherent beams named the 
'mixed' components of the O and G beams. There 
are also the purely incoherent components, the only 
ones present if E = 0, which are built by diffraction 
of the incident undiffracted wave into the incoherent 
G beam directly and then distributed between the O 
and G beams. 

In Kato (1980b), the coherent (I~ and I~), the 
purely incoherent (I~ and I~) and the mixed ( I~  and 
Ig)  intensity distributions are calculated as functions 
of the (So, sg) coordinates of Fig. 1, for an incident 
beam limited by an infinitely narrow slit on the front 
face of a parallel-sided crystal in the Laue case. 
Integration of these distributions on the back face of 
the crystal of thickness t gives the following terms 
of the forward and Bragg integrated intensities 
expressed as 

Ro(t) = R~(t)+ R~(t)+ R'~(t) 

Rg(t)= Rg(t )+ Rg(t )+ R~(t) .  

x 

t ~So 

Fig. 1. Illustration of the (So, sg) and (x, t) coordinates. 

x = (So-Sg) sin 0B; t = (s0+ sg) cos 0B. 
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